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Despite advances in treatment, cardiovascular disease (CVD)
remains a leading cause of death in developed countries.

Two key risk factors for CVD are low-density lipoprotein-
cholesterol (LDL-C) and high-density lipoprotein-cholesterol
(HDL-C). Lower levels of LDL-C correlate with a decrease in
deaths due to CVD. The opposite is true of HDL-C; CVD
decreases at higher levels of HDL-C.1�4 In recent decades, great
progress has been made in lowering LDL-C, particularly via
medicines such as statins and with lifestyle changes. While much
success has been achieved in decreasing LDL-C, increasing
HDL-C still presents a medical challenge.1�4 Even after 50 years
of use, niacin is still the leading therapy for raising HDL-C. How-
ever, the increase in HDL-C seen with niacin is modest (∼20%),
and side effects/toxicity prohibit some patients from taking this
drug.1�6 Thus, alternative avenues for raising HDL-C are being
investigated.

One target for raising HDL-C that has recently received great
attention in the scientific community is cholesteryl ester transfer
protein (CETP).1�4,7�10 CETP exchanges cholesteryl ester (CE)
and triglycerides between various lipoprotein particles. It has been
shown that inhibition of CETP dramatically increases HDL-C, both
in animal models and in the clinic.11,12 Unfortunately, the first
CETP inhibitor to reach phase III trials, torcetrapib (Figure 1),
failed to achieve the desired outcome of a reduction in coronary
events in patients receiving treatment.13 In fact, treatment with
torcetrapib increased the risk of death from both cardiovascular and
noncardiovascular causes.13 The reasons for this failure have been
the subject of intense debate, and further investigation of CETP
inhibitors is necessary.14�17 The CETP inhibitor anacetrapib
(Figure 1) has been shown to differ from torcetrapib in its off-target

Figure 1. Structures of torcetrapib, anacetrapib, and lead compound 1.
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ABSTRACT: Recently, there has been a strong interest in the ability to increase levels of high density
lipoprotein-cholesterol (HDL-C). This interest stems from the hypothesis that such an elevation in
HDL-C will decrease the likelihood of cardiovascular disease. Inhibition of cholesteryl ester transfer
protein (CETP) has been shown to elevate HDL-C levels in human subjects. This letter describes the
discovery of a novel and potent (<100 nM IC50 for the inhibition of CE transfer) CETP inhibitor
scaffold containing an oxazolidinone core.
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profile and is currently being studied in clinical trials.18,19 This letter
describes the discovery of a novel CETP inhibitor scaffold, closely
related to anacetrapib, which contains an oxazolidinone core.

In the investigation of CETP inhibitors conducted at Merck, lead
compound 1 (Figure 1) had emerged as a potent inhibitor of CE
transfer by CETP.20,21 It was hypothesized that the potency and/or

stability of 1 could be improved by constraining the acyclic carbamate
into an oxazolidinone ring. Retrosynthetically, it was anticipated that
the target molecule, 2, could be obtained by opening of epoxide 4
with amine 3 followed by closure of the resulting product to the
oxazolidinone (Scheme 1). Although a mixture of attack at the
terminal carbon and the benzylic position of epoxide 4was expected,

Scheme 1. Retrosynthetic Analysis of Target Compound 2

Scheme 3. Synthesis of Compound 2a

aReagents and conditions: (i) CH2Cl2, room temperature, 5 h, 25% yield. (ii) LiAlH4, Et2O, room temperature, 1 h, 52% yield. (iii) Phosgene, (i-
Pr)2EtN, CH2Cl2, room temperature, 10 min, 55% yield.

Scheme 2. Regioselective Epoxide Openinga

aReagents and conditions: (i) i-PrOH, reflux 12 h, 72% yield of 6.
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it was surprising to observe substitution exclusively at the less hind-
ered carbon, leading to undesired amino-alcohol 6 (Scheme 2).With
this first approach to compound 2 thwarted, an alternative synthesis
was undertaken (Scheme 3). Alkylation of amine 3 with bromide 7
led to intermediate 8, which was reduced to desired amino alcohol 5
with LiAlH4. Cyclization led to the racemic oxazolidinone 2. Dis-
appointingly, this constrained version of lead compound 1was a very
weak (14 μM) inhibitor of CETP (Table 1).22

In an effort to ensure the thorough investigation of constrained
analogues, amino alcohol 6 was also cyclized to the corresponding
oxazolidinone, although it was not anticipated that this regioisomer
would exhibit potent CETP inhibition.23 In the event, cyclization of 6
to 9 proceeded in good yield using triphosgene (Scheme 4).

Surprisingly, racemic 9 was shown to be a potent inhibitor of CETP
(Table 1). Separation of 9 into its two enantiomers (9A and 9B)
demonstrated that all of the activity resided in a single enantiomer
(9B).

To determine the stereochemistry of compound 9B, related
compounds 10 and 11 were synthesized following the route used
in the synthesis of 9 (Schemes 2 and 4) and starting by opening the
known, commercially available, S- and R-styrene oxides with amine
3.24 As in the case of compound 9, only one enantiomer (compound
11,R) was a potent inhibitor ofCETP, and this observation forms the
basis of the stereochemical assignment of 9A and 9B.25 Although
compound 9B is only a slightly more potent inhibitor of CETP than
original lead compound 1, it is interesting to note that 11 is much
more potent than the comparable acyclic analogue, compound 12. It
is also worthmentioning that the addition of a ring constraint did not
improve phamacokinetics. Compound 1 has a clearance of 12.8 mL/
min/kg in mice, while the clearance of 9B is 31.6 mL/mg/kg.
Volumes of distribution (3.3 L/kg for 1 and 3.4 L/kg for 9B) and
oral bioavailability (5% for1 and 4% for9B) inmice are similar for the
two compounds.

In summary, a new class of CETP inhibitors containing an
oxazolidinone core has been discovered. Surprisingly, the oxazoli-
dinone does not have the substitution pattern anticipated from an
earlier lead compound. Rather, it is an alternative regioisomer
discovered through a serendipitous, regioselective epoxide opening.
The novel molecule, 9B, is a potent inhibitor of CETP containing a
single chiral center. Further developments from this program
detailing the evolution of 9B into clinical candidate anacetrapib,
which also contains an oxazolidinone core, will be forthcoming.
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Table 1. IC50 Values for Inhibition of CE Transfera

a IC50 values were determined using a standard bioassay described in ref
22. The IC50 value for torcetrapib was been determined by this method
in ref 18 and was reported to be 13 nM. bAverage of three or more 10
point titrations. cResult of a single 10 point titration. dAverage of two 10
point titrations. e Inactive indicates <50% inhibition of CETP at a
concentration of 100 μM.

Scheme 4. Synthesis of Compound 9a

aReagents and conditions: (i) Triphosgene, (i-Pr)2EtN, CH2Cl2, 0 �C, 1
h, 98% yield.
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